鉅大LARGE | 點擊量:884次 | 2018年10月07日
為何要有電池管理系統
如果想把電動汽車上這個“將軍”理解透徹首先還是要從下面的士兵說起。BMS系統主要應用在二次電池上,尤其對于目前主流的使用鋰離子電池的電動新能源汽車尤為重要。
不管車輛使用的是哪種鋰離子電池,動力電池都是由一個個小的電池單體通過串、并聯的方式組成電池組,再由電池組最終組成車輛的動力電池單元。
而在電池組中真正發(fā)揮儲能作用的是電池組中每一個小小的電池單體,比如特斯拉使用的18650鋰離子電池,其實數字代表的就是每一個電池單體直徑為18mm,長度為65mm。
而一輛85kW/h版本的TeslaModelS的電池組就由接近7000節(jié)18650鋰電池構成。
一輛汽車上有如此多的電池單體,而每一個小的電池單體都是單獨制造的,因為電池的電化學特性的原因出廠后的電池存在每個單體儲能一致性存在差別的問題。
而充電時又是從一個充電口來為車子充電,如何保證每一塊電池都充滿電,而又不會因為過度充電對電池造成損害就是BMS系統要解決的問題之一。
BMS系統究竟是如何管理這么多電池單體的呢?
通常情況下,BMS系統都要通過兩部分來確定如何管理電池組,就是檢測模塊和原酸控制模塊。
檢測模塊的實現相對簡單一些,主要是通過傳感器收集電池在使用過程中的參數信息比如:溫度、每一個電池單體的典雅、電流,電池組的典雅、電流等。
這些數據在之后的電池組管理中起到至關重要的作用,可以說如果沒有這些電池狀態(tài)的數據作為支撐,電池的系統管理就無從談起。
根據收集到的數據,BMS系統就會根據每一個電池單體的實際情況來分配如何為電池充電,哪一個電池單體已經充滿可以停止給它充電等。
并且在使用過程中,通過狀態(tài)估算的方式確定每一顆電池的狀態(tài),通過SOC(StateOfCharge)、SOP(StateOfPower)、SOH(StateofHealth)以及均衡和熱管理等方式來實現對電池的合理利用。
一個完整的BMS的軟件工作比例:
上一篇:電動車電池在什么情況下需要更換呢
下一篇:鋰離子電池的原理分析