中文字幕色色五月天_一级免费高清无码网站_亚洲精品片911_91区国产福利在线观看午夜

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

是誰發(fā)明了鋰電池

鉅大LARGE  |  點擊量:3665次  |  2018年10月06日  



一、天生麗質(zhì)

鋰元素是在1817年被瑞典化學家貝齊里烏斯的學生阿爾費特遜發(fā)現(xiàn),貝齊里烏斯將其命名為鋰。到1855的年本生和馬奇森采用電解熔化氯化鋰的方法才得到金屬鋰單質(zhì),而工業(yè)化制鋰是在1893年由根莎提出的。現(xiàn)在仍然采用電解LiCl制取鋰,這個方法要消耗大量的電能,每煉一噸鋰就耗電高達六、七萬度。

鋰在他出世后的100多年中,它主要作為抗痛風藥服務(wù)于醫(yī)學界。美國特種航天特種局(NASA)最早認識到,鋰電池能作為一種高效的電池。這是因為電池電壓是和負極金屬活潑性密切相關(guān)的。作為非?;顫姷膲A金屬,鋰電池能提供較高的電壓。比如鋰電池可以提供3V的電壓,而鉛蓄電池只有2.1V,而碳鋅電池只有1.5V。根據(jù)P=UI,相同電流下,鋰電池能輸出更高的功率。

作為3號元素,自然界存在的鋰由兩種穩(wěn)定的同位素6Li和7Li組成,因此鋰的相對原子質(zhì)量只有6.9。這就意味著在在質(zhì)量相同時,金屬鋰比其它活潑金屬能提供更多的電子。此外,鋰元素還有另外一個優(yōu)點。鋰離子離子半徑小,因此鋰離子比其他大的離子更容易在電解液中移動,充放電時可以實現(xiàn)正負極間的有效、快速的遷移,從而使整個電化學反應(yīng)得以進行。

金屬鋰盡管有很多優(yōu)點,但是制造鋰電池還有很多需要克服的困難。首先,鋰是非?;顫姷膲A金屬元素,能和水以及氧氣反應(yīng),而且常溫下它就能與氮氣發(fā)生反應(yīng)。這就導致金屬鋰的保存、使用或是加工都比其他金屬要復雜得多,對環(huán)境要求非常高。所以,鋰電池長期沒有得到應(yīng)用。隨著科學家的攻關(guān),鋰電池的技術(shù)障礙一個個突破,鋰電池漸漸也登上了舞臺,鋰電池隨之進入了大規(guī)模的實用階段。

二、金屬鋰電池

在金屬鋰一次電池的開發(fā)中,初期選擇傳統(tǒng)正極材料,如Ag、Cu、Ni的化合物的電化學性能一直達不到要求,人們不得不尋找新的正極材料。1970年,日本Sanyo公司利用二氧化錳作為正極材料,造出了人類第一塊商品鋰電池。1973年松下開始量產(chǎn)正極活性物質(zhì)為氟化炭材料作正極的鋰原電池。1976年,以碘為正極的鋰碘原電池問世。上世紀80年代以后,鋰的開采成本大幅度降低,鋰電池開始商業(yè)化。

早期金屬鋰電池屬于一次電池,這種電池只能一次性使用、不能充電。鋰電池的成功極大地激發(fā)了人們繼續(xù)研發(fā)可充電電池的熱情,開發(fā)鋰充電電池的序幕就此拉開。1972年,美國??松?Exxon)公司采用二硫化鈦作為正極材料,金屬鋰作為負極材料,開發(fā)出世界上第一個金屬鋰充電電池。這款可充電鋰電池就擁有可深度充放電1000次且每次循環(huán)的損失不超過0.05%的優(yōu)良性能。

鋰充電電池研究曾經(jīng)非常深入,但直到今天為止,以金屬鋰為負極的充電電池仍然沒有商業(yè)化生產(chǎn)。這是因為鋰充電電池一直沒有解決充電的安全性問題。當鋰電池充電時,鋰離子在陰極獲得電子析出金屬鋰。在理想狀態(tài),金屬鋰應(yīng)該像水(金屬鋰)倒在地面(電極)上,鋪上平平的一層。但是,金屬鋰在陰極上的沉積,卻像在地上長了一棵樹一樣,形成樹枝狀的結(jié)構(gòu)。這些樹枝狀的金屬鋰經(jīng)過多次充放電,等樹枝長的足夠大就能從正極連到了負極,造成電池內(nèi)部短路,可能引起電池起火或者爆炸。1989年以后大多數(shù)企業(yè)停止了對鋰二次電池的開發(fā)。

三、搖椅式電池

為了繞開金屬鋰析出時產(chǎn)生的樹枝狀結(jié)晶問題,1980年,Armand率先提出了RCB概念。電池兩極不再采用金屬鋰,而是采用鋰的嵌合物。在鋰嵌合物中,嵌合物中有三維或者二維空隙,金屬鋰不是以晶體形態(tài)存在,而是以鋰離子和電子的形式存在于空隙中。你可以把鋰嵌合物想象成一個漢堡包,嵌合體相當于兩片面包,而鋰原子(鋰離子與電子)就是中間的牛排,能被很輕松地抽出和加入。正因如此,鋰離子嵌合物可以取代金屬鋰,作為電池中鋰離子的提供者。由于鋰離子放在嵌合物的空隙中,枝晶問題就不再嚴重了。更為重要的是,嵌合物往往對空氣等不敏感。因此鋰嵌合物大大增加了鋰電池的安全性。

第一個嵌入物質(zhì)就是我們再熟悉不過石墨。大家都知道,石墨具有層狀結(jié)構(gòu),層間距是0.355nm,而鋰離子只有0.07nm,所以鋰離子很容易插入石墨中,形成組成為C?Li的石墨鋰嵌合物。1982年,美國伊利諾伊理工大學的R.R.Agarwal和J.R.Selman發(fā)現(xiàn)鋰離子具有嵌入石墨的特性。他們發(fā)現(xiàn),鋰離子嵌入石墨的過程不僅快速。在充電時,石墨電極得到電子,并接受Li+離子嵌入,生成石墨-鋰化合物,反應(yīng)式為C?+Li?+eˉ→C?Li。放電時,則發(fā)生上述過程的逆反應(yīng)。

因此,改進后的鋰電池能夠釋放或儲存能量是因為鋰離子在兩個電極之間反復游走。在充電時,電流將正極嵌合物中的鋰離子趕了出來,這些鋰離子經(jīng)過正極與負極之間的電解液“游”到負極嵌合物中;而放電時,鋰離子又從負極嵌合物中經(jīng)過電解液“游”回正極嵌合物中。鋰在整個脫落和嵌入的循環(huán)過程中,都保持穩(wěn)定的離子形式,鋰離子能在電池兩極的嵌合物或者搖擺,因此又被稱為“搖椅式電池”(RockingChairBattery,縮寫為RCB)。

四、鋰離子電池

石墨價格低廉,結(jié)構(gòu)穩(wěn)定,是十分理想的負極材料,那么正極應(yīng)該采用什么材料呢。1970年,M.S.Whittingham發(fā)現(xiàn)鋰離子可以在層狀材料TiS2可逆的嵌入析出,適合做鋰電池正極。1980年,美國物理學教授JohnGoodenough找到了新物質(zhì)的LiCoO2。這種物質(zhì)也具有類似石墨的層狀結(jié)構(gòu)。1982年,Goodenough就發(fā)現(xiàn)了具有三維空隙的LiMn2O4,這種結(jié)構(gòu)能夠提供三維通道給鋰離子移動。1996年Goodenough又發(fā)現(xiàn)具有橄欖樹結(jié)構(gòu)的LiFePO?,這個物質(zhì)具有更高的安全性,尤其耐高溫,耐過充電性能遠超過傳統(tǒng)鋰離子電池材料。

日本索尼公司將鈷酸鋰(正極材料)和石墨(負極材料)結(jié)合,使用含有鋰鹽(如六氟磷酸鋰)的有機溶劑作為電解液,在1990年開發(fā)出了全新的可充電鋰電池,1992年,該種電池實現(xiàn)商業(yè)化。這樣的電池,工作電壓可達到3.7伏以上,索尼公司在并將該技術(shù)重新命名為“Li-ion”。這個標識可以在很多手機電池或者筆記本電池上找到。高性能,低成本,安全性好,這種鋰離子電池一經(jīng)問世立刻受到了歡迎,幫助索尼一躍成為行業(yè)老大。由于鋰離子電池中不含有重金屬鉻,與鎳鉻電池相比,大大減少了對環(huán)境的污染。

一般的電池主要的構(gòu)造包括有正極、負極與電解質(zhì)三項要素。鋰離子電池下一個重要更新是以高分子材料主要是取代電解質(zhì)溶液。1973年,Wright等人發(fā)現(xiàn)某些聚合物能夠較快的傳導鋰離子。1975年Feullade和Perche又發(fā)現(xiàn)PEO,PAN,PVDF等聚合物的堿金屬鹽配合物具有離子導電性。1978年,法國的Armadnd博士預言這類材料可以用作儲能電池的電解質(zhì),提出電池用固體電解質(zhì)的設(shè)想。1995年,日本索尼公司發(fā)明了聚合物鋰電池,電解質(zhì)是凝膠的聚合物。1999年,聚合物鋰離子電池實現(xiàn)商品化。

五、鋰電池的未來

1958年,哈里斯(Harris)考慮到鋰會與水以及空氣發(fā)生反應(yīng),提出了采用有機電解質(zhì)作為金屬鋰電池的電解質(zhì)。這一構(gòu)想一直左右了鋰離子電池的發(fā)展。但是液態(tài)電解液存在一定的安全隱患,因此諸多科研機構(gòu)和企業(yè)決定另辟蹊徑去開發(fā)固態(tài)電解質(zhì)技術(shù)。全固態(tài)電池將原先的液態(tài)有機電解池換成一種全新的固態(tài)電解質(zhì)。固態(tài)電解質(zhì)不僅能夠保證原有的儲電性能,還能防止枝晶問題的產(chǎn)生,而且更安全,更廉價。

鋰金屬電池則是近幾年科學研究的另一個焦點。這是因為,鋰嵌合物雖然解決了樹枝狀結(jié)晶等安全問題,但是由于嵌合物不具有得失電子的功能,因此電池容量大大降低。比如電池的金屬鋰負極的比容量是石墨鋰化合物C6Li負極的11倍以上!如果鋰金屬充電電池能夠研發(fā)成功,我們的電子設(shè)備會更加輕盈,電動汽車則會跑得更遠!

目前,鋰電池仍然存在著一些安全問題,比如部分手機廠商于對隔膜材料質(zhì)量控制不嚴或者工藝缺陷,導致隔膜局部變薄,不能有效隔離正極與負極,從而造成了電池的安全問題。其次鋰電池在充電過程中很容易發(fā)生短路情況。雖然,現(xiàn)在大多數(shù)鋰離子電池都帶有防短路的保護電路,還有防爆線,但很多情況下,這個保護電路在各種情況下不一定會起作用,防爆線能起的作用也很有限。因此,提高鋰電池的安全性也是研究焦點。

鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力