鉅大LARGE | 點擊量:2753次 | 2021年02月21日
廢舊鋰離子電池前期預(yù)處理的方法基本有什么?
1.1.1放電
廢舊鋰離子電池里面有殘余電量。為了防止拆卸電池中發(fā)生意外,須在拆卸前對電池放電。處理方法有物理放電法和化學放電法。物理放電法重要是利用低溫強制放電,這種方法適用于小批量生產(chǎn)中,美國Umicore、Toxco公司利用液氮對電池進行低溫預(yù)處理,在溫度為-198℃下安全破碎電池,但是該種方法對設(shè)備要求較高?;瘜W放電法,重要是利用電解方式來放電。電解液多為氯化鈉溶液。將電池置于該溶液中,電池的正負極在導(dǎo)電液中發(fā)生短路,快速實現(xiàn)了電池的完全放電。此方法的弊端在于電解液濃度及溫度會影響電池放電速度,電池內(nèi)的有價金屬會溶解至導(dǎo)電液中,降低金屬回收率。同時,含有有價金屬的溶液具有較強的污染性,造成回收困難,使回收成本新增[3-4]。
1.1.2拆解、破碎
在實驗室中,因為電池體積小,多數(shù)采用手工方式拆解、分離電池。而在實際生產(chǎn)中,多采用機械破碎的方法拆解電池。機械破碎的一種方法是濕法。濕法是以各種酸堿性溶液為轉(zhuǎn)移媒介,將金屬離子從電極材料中轉(zhuǎn)移到浸出液中,再通過離子交換、沉淀、吸附等手段,將金屬離子以鹽、氧化物等形式從溶液中提取出來。濕法回收技術(shù)工藝比較復(fù)雜,但對有價金屬的回收率較高,是目前重要處理廢舊鎳氫電池和鋰離子電池的技術(shù)。王元蓀等[5-6]等嘗試采用稀堿水浸泡電池,再進行粉碎處理。該法可以減少HF的出現(xiàn)量,但是不能有效回收含氟電解液,從而易造成二次污染。另一種方法是干法。干法重要包括機械分選法和高溫熱解法(或稱高溫冶金法)。機械分選法回收工藝流程優(yōu)點較短,回收的針對性強,是實現(xiàn)金屬分離回收的初步階段。He[7]等研究比較了濕法和機械分選法破碎對回收處理廢舊鋰離子電池的不同影響,結(jié)果表明,機械分選法破碎不會將電池組分破碎成易混合在一起的細小顆粒,回收率較高。但機械分選法回收并不能徹底分離廢舊鋰離子電池中的各元件,人們嘗試采用了高溫熱解的方法,即把電池放在馬弗爐中加熱,除去電池中的有機溶劑。Joo[8]等采用機械分選法和高溫熱解法兩種方法并用高效對廢舊鈷酸鋰離子電池的鈷和鋰進行高效回收。但是高溫熱解法也會造成負面效應(yīng),如高溫處理過程中出現(xiàn)有害氣體,易引起爆炸,因此要安裝純化裝置。
1.2活性物質(zhì)、集流體的分離
正極活性物質(zhì)和鋁箔集流體的分離重要采用的是包括有機溶劑溶解、高溫分解法兩種方法。有機溶劑放電重要利用有機溶劑溶解PVDF后,使得正極活性材料與集流體分離。Zeng[9]使用NMP浸泡電極片,對電池內(nèi)的活性物質(zhì)與集流體實現(xiàn)了有效分離。Yang[10]借助有機溶劑DMAC(N,N-二甲基乙酰胺)溶解,在100℃、60min的工藝條件下去除了集流體上的粘結(jié)劑。但是此回收方法得到的活性物質(zhì)顆粒較小,固液分離困難,回收投資大。高溫分解法是在高溫下分離正極材料和活性體。Daniel[11]等采用了真空環(huán)境下高溫處理的方法,使集流體中的有機物在高溫下(600℃)分解,正極材料上有部分的正極材料從鋁箔上分離,當溫度大于650℃后,鋁箔和正極材料都成顆粒狀,混為一體。這種方法會出現(xiàn)有害氣體,對空氣造成污染。
1.3有價金屬分離回收與利用
廢舊鋰離子電池中有價金屬回收利用重要是對正極活性物質(zhì)的回收。正極回收處理方法重要包括生物法、高溫燃燒法、酸溶解法和電化學溶解法等方法。
1.3.1生物法
生物法是利用微生物的代謝功能將正極中金屬元素轉(zhuǎn)化成可溶化合物并選擇性地溶解出來,得到金屬溶液后,利用無機酸將正極材料各組分分離,最終實現(xiàn)有價金屬的分離與回收。賈智慧[12]等采用了氧化亞鐵桿菌和氧化硫桿菌處理廢舊鋰離子電池,該方法回收成本低,常溫常壓的工藝條件易于實現(xiàn)。但是該方法的不足是菌種不易培養(yǎng),浸出液難分離。Zeng[13]等利用嗜酸菌以硫元素和亞鐵離子為能量源,代謝出現(xiàn)硫酸和鐵離子等產(chǎn)物,將廢舊鋰離子電池中的金屬元素溶出。但是,較高含量的Fe(Ⅲ)與其他金屬元素出現(xiàn)共沉淀用途,會降低金屬的溶解性,影響生物細胞的生長速度,降低金屬溶出率。生物法具有成本低、污染小、可重復(fù)利用的特點,已成為廢舊鋰離子有價金屬的回收技術(shù)重要發(fā)展方向。但是其也有要解決的問題,比如微生物菌種的選擇與培養(yǎng),最佳浸出條件,金屬的生物浸出機理等。
1.3.2高溫燃燒法
高溫燃燒法指的是將拆除的正極材料在有機溶劑中浸泡后,再在高溫下燃燒得到有價金屬。日本的索尼和住友公司對廢舊鋰離子電池在草酸中浸泡后,于1000℃進行火法焚燒,去除電解液及隔膜,并實現(xiàn)了電池的破解,焚燒后的殘余物質(zhì)通過篩分、磁選來分離Fe、Cu、Al等金屬。結(jié)果表明:當草酸濃度為1.00molL-1,料液比為40~45gL-1,80℃下攪拌15~20min溶解性最優(yōu)。日本松田光明等將正極材料浸泡后利用機械破損法破碎,并在機械破碎后利用馬弗爐高溫熱處理、浮選等手段分離金屬。但是這種方法能耗大、溫度高,會出現(xiàn)廢氣污染環(huán)境,得到的金屬中雜質(zhì)含量高,要經(jīng)過進一步提純才能獲得高純度的金屬材料。
1.3.3酸溶解法
這種方法指的是利用酸將正極材料溶解,再用有機萃取劑將溶液中金屬萃取,實現(xiàn)金屬離子的分離,經(jīng)過處理后得到有價金屬。賀理珀[14]等在80℃下,分別以1.5mol/L和0.9mol/LH2SO4和H2O2,溶解鋰離子電池正極材料的鈷酸鋰。周濤[15]等人利用上述得到的鈷離子溶液,使用萃取劑AcorgaM5640萃取銅,使用Cyanex272萃取鈷,銅的回收率達到98%,鈷的回收率為97%,而剩余的鋰可用碳酸鈉將其沉淀出來。Wang[16]等利用鹽酸溶解正極材料,PC-88A做萃取劑萃取鈷離子,后續(xù)處理后得到了硫酸鈷。該法的優(yōu)點是得到的金屬純度高。缺點是萃取劑價格高,有毒性,對人身體有傷害,處理過程比較復(fù)雜。
下一篇:電池污染重要危害有什么?