鉅大LARGE | 點(diǎn)擊量:973次 | 2020年07月10日
充電ic新世界,鋰離子電池充電ic設(shè)計(jì)方法探討
關(guān)于充電ic,不知大家了解多少。充電ic的應(yīng)用,使得我們的生活更為便利。為增進(jìn)大家對(duì)充電ic的了解,本文將講解鋰離子電池充電ic的設(shè)計(jì)方法。假如你對(duì)充電ic具有濃厚興趣,不妨繼續(xù)往下閱讀哦。
鋰離子和鋰聚合物電池具有工作電壓高、無(wú)記憶效應(yīng)、工作溫度范圍寬、自放電率低及比能量高優(yōu)點(diǎn)。使其能夠較好地滿足便攜式設(shè)備對(duì)電源小型化、輕量化、長(zhǎng)工作時(shí)間和長(zhǎng)循環(huán)壽命以及對(duì)環(huán)境無(wú)害等要求,同時(shí)隨著鋰離子電池產(chǎn)量的提高,成本的降低,鋰離子電池以其卓越的高性價(jià)比優(yōu)勢(shì)在便攜式設(shè)備電源上取得了主導(dǎo)地位,這也使得鋰離子電池充電器得到了巨大的發(fā)展和廣闊的市場(chǎng)。本文設(shè)計(jì)一款針對(duì)單節(jié)鋰離子電池的線性充電器IC,采用CMOS工藝設(shè)計(jì)了一款具有智能熱調(diào)整功能的單片線性鋰離子電池充電器IC,在此設(shè)計(jì)的線性鋰離子電池充電器IC在恒流/恒壓充電模式的基礎(chǔ)上,新增了涓流充電模式和智能熱調(diào)整模式。
1線性鋰離子電池充電器的整體結(jié)構(gòu)設(shè)計(jì)
圖1所示為本文鋰離子電池充電器的整體功能模塊圖。這些子模塊包括?;鶞?zhǔn)電壓源、基準(zhǔn)電流源、欠壓閉鎖模塊、恒流充電放大器、恒壓充電放大器、智能熱調(diào)整放大器、鉗位放大器、振蕩器、計(jì)數(shù)器、電池溫度保護(hù)模塊、功率管襯底保護(hù)模塊、邏輯模塊以及多個(gè)比較器模塊。
考慮芯片的實(shí)際應(yīng)用,本文設(shè)計(jì)的鋰離子電池充電器具有以下幾個(gè)特點(diǎn):
(1)芯片的溫度保護(hù)方面在充電過(guò)程中,當(dāng)電池的電壓達(dá)到涓流充電跳變電壓門限而進(jìn)入恒流階段時(shí),恒流階段為大電流充電,由于本文的功率管為pMOS,在負(fù)載電池和電源之間只有該功率管,此時(shí)電池電壓較低,芯片功率耗散達(dá)到最大。其功率耗散為:
p=(Vcc-VBAT)Icc(1)
大功率耗散將導(dǎo)致芯片的溫度急劇上升,因此設(shè)置了一個(gè)智能的熱反饋回路。當(dāng)芯片溫度上升到熱反饋溫度點(diǎn)105℃時(shí),啟動(dòng)熱反饋回路,使芯片溫度維持在105℃。當(dāng)電池電壓進(jìn)一步升高時(shí),由式(1)可知,功率耗散逐漸降低,在較小的功率耗散下,芯片的溫度會(huì)逐漸降低。此時(shí)退出智能熱調(diào)整工作模式,進(jìn)入恒流充電模式,使用大電流Icc對(duì)電池充電,或者直接進(jìn)入恒壓充電階段。該熱反饋回路的使用,使充電的速率最大化,同時(shí)用戶無(wú)需擔(dān)心芯片的溫度過(guò)高。
(2)成本方面。本文介紹的芯片采用CMOS工藝設(shè)計(jì),成本低,工藝易于實(shí)現(xiàn)。
(3)與用戶的交互式管理方面。芯片供應(yīng)了多個(gè)外部用戶編程引腳以方便用戶對(duì)芯片的管理和使用。在充電電流的控制方面,用戶可以通過(guò)連接1只電阻至芯片一個(gè)引腳對(duì)充電電流進(jìn)行編程;在充電最終電壓的控制方面,用戶可通過(guò)將芯片的一個(gè)引腳接高電平或低電平來(lái)設(shè)置最終充電電壓為4.1V或4.zV,以適應(yīng)對(duì)使用不同的負(fù)極材料的鋰離子電池進(jìn)行充電;在充電時(shí)間的控制上,用戶可通過(guò)連接1只電容至芯片1個(gè)引腳對(duì)充電時(shí)間進(jìn)行編程,滿足用戶不同的充電時(shí)間要求。芯片設(shè)計(jì)預(yù)計(jì)達(dá)到的特性和參數(shù)見表1.
芯片引腳的外部連接如圖2所示。在圖2中,CHRG,FAULT,ACpR三引腳分別與一個(gè)1kΩ的電阻以及一個(gè)發(fā)光二極管相連,用于指示芯片的充電狀態(tài);4.7μF電容為電源Vcc的旁路電容,在電池BAT引腳處接有一個(gè)ESR為1Ω的1μF旁路電容,用于在沒有電池時(shí),將紋波電壓保持在低水平。NTC引腳處,一個(gè)10kΩ的負(fù)溫度系數(shù)的電阻RNTC與4kΩ電阻相串連,將RNTC上的分壓作為NTC引腳的輸入。
2線性鋰離子電池充電器的整體仿真結(jié)果
仿真中,為縮短仿真時(shí)間,將電池等效為一個(gè)大電容CBAT,其等效串連電阻為RESR.2為對(duì)預(yù)設(shè)定的充電器芯片特性參數(shù)表仿真后得到的結(jié)果。
2.1電器充電過(guò)程波形圖
圖3~圖5是充電器的充電過(guò)程在不同的條件下仿真得到的結(jié)果。為縮短仿真時(shí)間,電池預(yù)設(shè)的電壓為2.3V,以便充電過(guò)程能夠迅速地由涓流充電模式過(guò)渡到恒流充電模式。
在仿真中,RpROG的值設(shè)置為3kΩ,涓流充電電流為50mA,恒流充電電流為500mA;SEL引腳接地電位,電池的最終充電電壓為4.1V.由圖3~圖5中可以知,在各種工作條件下,充電器都能正常工作。在圖4中充電的過(guò)程與溫度的關(guān)系曲線中,當(dāng)溫度為125℃時(shí),充電電流為零,這是由于芯片中的智能熱調(diào)整溫度Tc是105℃,智能熱調(diào)整電路正常運(yùn)行使芯片的充電電流在125℃時(shí)降至零,電池的電壓一直維持在2.3V.
以上便是此次小編帶來(lái)的“充電ic”相關(guān)內(nèi)容,希望大家對(duì)本文講解的內(nèi)容具備一定的認(rèn)知。假如你喜歡本文,不妨持續(xù)關(guān)注我們網(wǎng)站哦,小編將于后期帶來(lái)更多精彩內(nèi)容。最后,十分感謝大家的閱讀,haveaniceday!