鉅大LARGE | 點(diǎn)擊量:1294次 | 2020年06月16日
一種電源老化節(jié)能方法
1引言
通常情況下,設(shè)備的例行老化是讓設(shè)備接上模擬負(fù)載進(jìn)行模擬工作,當(dāng)然能量就消耗在模擬負(fù)載上,這種消耗通常沒有得到最佳的利用。本文根據(jù)電源轉(zhuǎn)換器是將電能轉(zhuǎn)換為不同等級電能的特點(diǎn),提出通過能量反饋實(shí)現(xiàn)大部分能量的循環(huán)利用,從而實(shí)現(xiàn)節(jié)能的目的。如何節(jié)能,減少能源消耗是人們一直追求的目標(biāo),在建設(shè)節(jié)約型社會的今天,節(jié)能降耗的意義更顯重要。
2工作原理
電源轉(zhuǎn)換器能將電能加工為要的電能,它的例行老化使用只要在電源轉(zhuǎn)換器的輸出端連接合適的電阻負(fù)載或等效阻抗的用電設(shè)備讓其保證一定的負(fù)荷工作即可。如圖1所示:輸入電壓Vin被電源轉(zhuǎn)換器轉(zhuǎn)換為Vout加在電阻負(fù)載上,在例行工作時,電源轉(zhuǎn)換器消耗功率(未計算轉(zhuǎn)換過程損耗)為po=Vout2/R1。
圖1轉(zhuǎn)換器工作示意圖
這種情況下,電能消耗沒有得到任何利用,就直接轉(zhuǎn)化為熱能從電阻負(fù)載上散發(fā)出去,是對電能的一種嚴(yán)重浪費(fèi)。
要實(shí)現(xiàn)節(jié)能循環(huán)利用,重要考慮將消耗在電阻負(fù)載上的能量更加合理的利用。假如能將輸出電壓Vout再還原為輸入電壓Vin,則輸出電能轉(zhuǎn)換為輸入的電能,便可以實(shí)現(xiàn)電能的循環(huán)利用,如圖2所示:將原有轉(zhuǎn)換器的電阻負(fù)載R1用等效輸入阻抗的轉(zhuǎn)換器2取代,轉(zhuǎn)換器2的輸出接轉(zhuǎn)換器1的輸入。則與R1等效輸入阻抗的轉(zhuǎn)換器2從轉(zhuǎn)換器1輸出端消耗的能量被轉(zhuǎn)換到轉(zhuǎn)換器1的輸入端,再經(jīng)轉(zhuǎn)換器1又到轉(zhuǎn)換器2的輸入端,實(shí)現(xiàn)了能量的循環(huán)利用。假如在理想情況下,沒有轉(zhuǎn)換損耗,則系統(tǒng)可以自循環(huán)工作。當(dāng)然這是無法實(shí)現(xiàn)的,所以在能量分析時,要引入轉(zhuǎn)換過程的消耗。
對以上兩種工作模式下的能量消耗做如下分析:
第一種工作模式是在沒有能量循環(huán)的情況下,pi為轉(zhuǎn)換器的輸入能量,pw為電源轉(zhuǎn)換器轉(zhuǎn)換過程中的消耗能量,po為轉(zhuǎn)換器消耗在電阻負(fù)載上的輸出能量。假定轉(zhuǎn)換器的轉(zhuǎn)換效率為80%時,于是可設(shè)轉(zhuǎn)換器在轉(zhuǎn)換過程消耗的能量為pw=25%po,則整體總能量消耗也就是轉(zhuǎn)換器的輸入能量pi=po+pw=1.25po。
第二種工作模式是引入能量反饋的情況下,能量轉(zhuǎn)換如圖3所示:轉(zhuǎn)換器1為要例行使用的電源轉(zhuǎn)換器,轉(zhuǎn)換器2為用于能量反饋的轉(zhuǎn)換器,pi為系統(tǒng)外給轉(zhuǎn)換器1的輸入能量,pw為轉(zhuǎn)換器1轉(zhuǎn)換過程中的消耗能量,po為例行使用電源轉(zhuǎn)換器1正常應(yīng)輸出的能量,同時也是轉(zhuǎn)換器2的輸入能量;pwf為用于能量反饋的轉(zhuǎn)換器2轉(zhuǎn)換過程中的消耗能量,pf為轉(zhuǎn)換器2反饋給電源轉(zhuǎn)換器1的能量。
圖3有反饋模式的能量轉(zhuǎn)換圖
假設(shè)電源轉(zhuǎn)換器1和轉(zhuǎn)換器2的轉(zhuǎn)換效率都為80%,則轉(zhuǎn)換器1轉(zhuǎn)換過程消耗能量同模式1為:pw=25%po,由轉(zhuǎn)換器的轉(zhuǎn)換效率得轉(zhuǎn)換器2轉(zhuǎn)換過程的消耗能量:pwf=20%po,根據(jù)能量守衡定律,則整體總消耗能量:pi=pw+pwf=25%po+20%po=45%po。
從以上兩種模式情況下,能量消耗分析可以得出結(jié)論,采用具有能量反饋的工作模式進(jìn)行例行老化使用時,所消耗的能量只要工作能量的0.45,相比較沒有能量反饋的例行老化使用,總消耗能量為工作能量的1.25倍.因此具有能量反饋的例行老化使用模式節(jié)約能源。
3系統(tǒng)實(shí)現(xiàn)
從以上兩種工作模式分析所得,可以利用能量反饋形成能量循環(huán)系統(tǒng),減少能量消耗,系統(tǒng)工作可由圖4示意,包括三個部分:
圖4能量反饋系統(tǒng)實(shí)現(xiàn)示意圖
a)電源部分,為系統(tǒng)供應(yīng)外在激勵源;
b)轉(zhuǎn)換器部分為要例行老化的電源設(shè)備,將輸入電源電壓轉(zhuǎn)換為要輸出電壓;
c)能量反饋部分可將轉(zhuǎn)換器的輸出電壓轉(zhuǎn)換為轉(zhuǎn)換器的輸入電壓。
能量反饋部分和要例行試用的轉(zhuǎn)換器組成一個能量循環(huán)系統(tǒng),在外電源的激勵下,系統(tǒng)保持額定功率運(yùn)轉(zhuǎn)。由功率公式p=U*I,U由例行老化的電源轉(zhuǎn)換器穩(wěn)定,要保證該額定功率,就是保證輸出電流I,即能量反饋部分設(shè)計成恒流電路,所以系統(tǒng)在額定功率下,保證能量循環(huán)穩(wěn)定工作的等效控制量為要例行使用的電能轉(zhuǎn)換器的輸出電流。
在能量反饋部分就要能實(shí)現(xiàn)上述要求,保證穩(wěn)定的電能轉(zhuǎn)換器的輸出電流,采用電流傳感器檢測電能轉(zhuǎn)換器的輸出電流,同時反饋部分采用反饋電壓與輸出控制電流之間成反比系數(shù)關(guān)系即Uf∝K/Io,為便于分析,設(shè)電源電壓Ui為穩(wěn)定值。當(dāng)輸出電流較小時,通過調(diào)節(jié)反饋電壓,使其變大,則反饋電壓與輸入的電壓差△U=Uf-Ui變大,相應(yīng)的由反饋電壓流向輸入電壓的電流加大,造成相應(yīng)的反饋功率加大;當(dāng)輸出電流較大時,通過調(diào)節(jié)反饋電壓,使Uf變小,則反饋電壓與輸入的電壓差△U變小,相應(yīng)的由反饋電壓流向輸入電壓的電流減小,造成循環(huán)的功率減小;整個過程維持負(fù)反饋控制,最終達(dá)到動態(tài)平衡,維持設(shè)定的額定功率。
4反饋設(shè)計
從以上能量反饋系統(tǒng)工作分析可知,能量反饋部分為系統(tǒng)穩(wěn)定工作供應(yīng)必要的保證,能量反饋部分組成可由圖5所示,重要包括:輸入部分、功率轉(zhuǎn)換部分、輸出部分、采樣、基準(zhǔn)、比較器和控制器七個組成部分。
圖5能量反饋組成框圖
a)輸入部分是對輸入電能必要的濾波處理同時為控制器部分電路供應(yīng)輔助工作電源;
b)功率轉(zhuǎn)換部分用途重要是在控制器的控制下,將輸入電能轉(zhuǎn)換為要的電能;
c)輸出濾波部分重要用途是對功率轉(zhuǎn)換部分輸出電能進(jìn)行必要的濾波;
d)采樣部分重要是對輸出電能采樣供應(yīng)與輸出呈線性關(guān)系的采樣信號;
e)基準(zhǔn)部分供應(yīng)與采用比較的穩(wěn)定參考值;
f)比較器將采樣信號與基準(zhǔn)信號比較,出現(xiàn)兩者的誤差信號;
g)控制器部分用途是根據(jù)比較器供應(yīng)的誤差信號,給出對功率轉(zhuǎn)換部分的控制信號。
關(guān)于功率轉(zhuǎn)換部分的電路拓?fù)淇筛鶕?jù)功率大小以及轉(zhuǎn)換電壓,選定如buck型或boost型以及由此引申的各種電路形式??刂破骺蛇x用專門的控制芯片或通用的處理芯片實(shí)現(xiàn)上述要求的控制。
5試驗過程與結(jié)果
根據(jù)上述反饋部分的設(shè)計要求,采用一種轉(zhuǎn)換電壓從48V到200V功率為180W的直流變換器為要例行老化的轉(zhuǎn)換器1,用于能量反饋的轉(zhuǎn)換器2電路重要包括兩大重要部分:分為功率轉(zhuǎn)換部分和控制器部分。在功率轉(zhuǎn)換部分的采用推挽轉(zhuǎn)換方式電路和全橋整流電路??刂破鞑捎肬NITRODE公司的固定頻率,電流模式的pWM控制芯片3846,其內(nèi)部電路圖由振蕩器、誤差放大器、基準(zhǔn)源、鎖存器、圖騰輸出等組成。其重要特點(diǎn)是:逐周波電流限制、支持緩啟動、差分電流檢測放大、高達(dá)500的工作頻率、500的峰值圖騰輸出以及欠壓鎖定等功能,比較便于外圍功能設(shè)定。按照上述的系統(tǒng)設(shè)計,依據(jù)例行老化。
圖6試驗結(jié)果比較圖
轉(zhuǎn)換器1的輸出功率,測試系統(tǒng)相應(yīng)的消耗功率,同時比較沒有電能反饋模式下的消耗功率,所得的比較結(jié)果如圖6所示,由圖可知,在通常工作模式情況下,消耗功率大于輸出功率,同時隨著輸出功率增大迅速上升;關(guān)于有能量反饋的模式,系統(tǒng)消耗功率小于工作循環(huán)功率,在輸出功率為100W前,曲線的上升率較大,在輸出功率大于100W后,曲線上升率較小且有一定的收斂趨勢。
結(jié)果分析:在通常工作模式情況下,曲線的波動是由于電能轉(zhuǎn)換器的轉(zhuǎn)換效率影響造成的,由前面原理分析可知消耗功率為pi=po+pw,假如轉(zhuǎn)換效率為,則pi=po/η,轉(zhuǎn)換效率η通常隨著輸出功率的變化有一定的波動,所以曲線的波動符合理論分析;在有反饋的工作模式情況下,由前面原理分析部分得系統(tǒng)的消耗功率為pi=pw+pwf,分別設(shè)轉(zhuǎn)換器1的轉(zhuǎn)換效率為η1,反饋部分的轉(zhuǎn)換效率為η2,則系統(tǒng)的消耗功率為:
由于η1和η2隨著功率的加大都會有所提高,所以系數(shù)1/η1-η2會有一定的收斂,相應(yīng)的功率消耗有一定的收斂符合理論分析。
6結(jié)論
基于能量循環(huán)的老化節(jié)能實(shí)現(xiàn)方法具有明顯的節(jié)能效果,能大幅度降低電源老化過程的電能消耗,從本質(zhì)上解決電源老化設(shè)備大能耗問題。有利于降低生產(chǎn)公司的生產(chǎn)成本,提高公司生產(chǎn)現(xiàn)代化水平,為國家節(jié)能降耗做出貢獻(xiàn)。