鉅大LARGE | 點(diǎn)擊量:990次 | 2020年03月19日
利用電子組件提高電動(dòng)型汽車(chē)的電池性能實(shí)現(xiàn)方法
概述
混合動(dòng)力電動(dòng)型汽車(chē)電池中的電子組件是提高性能和安全性的關(guān)鍵。在集成電路設(shè)計(jì)領(lǐng)域的新技術(shù)使電池組設(shè)計(jì)師能進(jìn)一步提高鋰離子電池的性能。更高的測(cè)量準(zhǔn)確度、更堅(jiān)固的數(shù)據(jù)鏈路和電池容量的主動(dòng)電荷平衡都幫助實(shí)現(xiàn)了更低的成本、更長(zhǎng)的行駛周期和更快的充電。
典型的電池組方框圖(圖1)由幾組串聯(lián)連接的鋰離子電池組成,它們的測(cè)量和平衡由高壓模擬集成電路完成。這些模擬前端(AFE)IC執(zhí)行艱難的測(cè)量每節(jié)電池電壓、電流和溫度的任務(wù),并向控制電路傳遞數(shù)據(jù)??刂破鬟\(yùn)用電池?cái)?shù)據(jù)計(jì)算電池組的電荷狀態(tài)和健康狀態(tài)。控制器可能命令前端IC給某些電池充電或放電,以在電池組內(nèi)保持平衡的電荷狀態(tài)。
圖1:電池組方框圖
BATTERYpACK:電池組DATApORT:數(shù)據(jù)端口CONTROLLER:控制器StateofCharge:電荷狀態(tài)StateofHealth:健康狀態(tài)SystemSafety:系統(tǒng)安全DATABUS:數(shù)據(jù)總線(xiàn)ISOLATIONBARRIER:隔離勢(shì)壘AFEIC:模擬前端(AFE)ICMEASURE&BALANCE:測(cè)量與平衡12SERIESLI-IONCELLS:12節(jié)串聯(lián)的鋰離子電池。
更高的準(zhǔn)確度意味著更低的成本
模擬前端IC的測(cè)量準(zhǔn)確度對(duì)系統(tǒng)成本有直接影響。要準(zhǔn)確的測(cè)量以實(shí)現(xiàn)有用的電荷狀態(tài)(SOC)計(jì)算。為了實(shí)現(xiàn)長(zhǎng)壽命,電池組一般在20%至80%的SOC之間工作。假如在SOC計(jì)算中有5%的不確定性,那么電池組的尺寸就必須增大5%,這導(dǎo)致電池的成本顯著增大。給一個(gè)16kW-hr電池組新增5%的容量,要約360歐元(460美元)。改進(jìn)SOC計(jì)算以實(shí)現(xiàn)1%的誤差意味著,每個(gè)電池組能節(jié)省約300歐元(385美元)。
電池電壓測(cè)量是SOC算法的關(guān)鍵要素。當(dāng)測(cè)量3.3VLiFepO4(磷酸鐵鋰)電池時(shí),IC電源和電池組開(kāi)發(fā)人員都集中采用總測(cè)量誤差1mV的規(guī)格。
關(guān)于諸如售價(jià)480歐元(615美元)的Fluke-289手持式萬(wàn)用表等實(shí)驗(yàn)室設(shè)備,測(cè)量3.3V至1mV以?xún)?nèi)的電壓是司空見(jiàn)慣的。AFEIC必須以1/100的成本供應(yīng)相同的性能,并在汽車(chē)環(huán)境中持續(xù)工作15個(gè)年。只有為數(shù)不多的IC技術(shù)能夠?qū)崿F(xiàn)這一目標(biāo)。
真實(shí)世界中的準(zhǔn)確度
什么樣的IC技術(shù)最適合電池測(cè)量呢?答案可從圖2(典型AFEIC的方框圖)的誤差分析獲得。12個(gè)串接電池之一由多路復(fù)用器(MUX)模塊來(lái)選擇。通過(guò)閉合“S”開(kāi)關(guān)把電池電壓存儲(chǔ)在一個(gè)電容器上。斷開(kāi)“S”開(kāi)關(guān),然后閉合“T”開(kāi)關(guān)。電池兩端的電壓將轉(zhuǎn)移至ADC。這種“飛跨電容器”方法消除了頂端電池33V的大共模電壓,并保持了3.3V的差分電壓。模數(shù)轉(zhuǎn)換器(ADC)將電池電壓與其電壓基準(zhǔn)進(jìn)行比較,并出現(xiàn)一個(gè)與VCELL和VREF之比成比例的數(shù)字結(jié)果。
圖2:典型模擬前端(AFE)IC
DATAI/O:數(shù)據(jù)I/OVOLTAGEREFERENCE:電壓基準(zhǔn)。
假如開(kāi)關(guān)的阻抗太大,無(wú)法在很短的采樣時(shí)間內(nèi)給電容器充電,那么MUX和飛跨電容器就可能引入測(cè)量誤差。細(xì)致的開(kāi)關(guān)電容器設(shè)計(jì)可消除這個(gè)誤差項(xiàng)。
由ADC進(jìn)行從模擬到數(shù)字的轉(zhuǎn)換還可能由于組件失配而引入誤差。其次,細(xì)致的設(shè)計(jì)與組件微調(diào)相結(jié)合,可降低ADC引起的誤差。